

Self-consumption with surplus and simplified compensation

What does it mean to have a simplified compensation self-consumption plan?

According to Spanish Royal Decree 244/2019, simplified compensation works by providing you with financial compensation for each kWh of energy that your energy company feeds back into the grid. At U energia, we pay this compensation at real market value, minus one euro for deviation and other expenses. The amount corresponding to access rates, however, is never compensated.

Here's an example from January 2022. There were 150 kWh of energy consumed from the grid, 300kWh fed back into the grid, a 2.0 A rate and three energy time periods:

Cost of g	rid energy con on your bill	d energy consumption on your bill		Calculation of acces rates	
P1	P2	P3	P1	P2	P3
50 kWh consumed x 0,418437 €/kWh	50 kWh consumed x 0,316156 €/kWh	50 kWh consumed x 0,247007 €/kWh	50 kWh consumed x 0,100756 €/kWh	50 kWh consumed x 0,03374 €/kWh	50 kWh consumed x 0,004351 €/kWh
20,92€	15,81€	12,35€	5,04€	1,69€	0,22€
Total cor	nsumed in	€ 5,42 €	Total acc	es rates ir	n € 2,2 €

In this example, the compensation will be calculated in the following way:

Total consumed		Total access rates		Maximum compensation
49,08 €	_	6,94€	=	42,14€

In this case, the total energy fed back into the grid is greater than the maximum compensation amount, so a line will appear on the bill with a positive figure which represents the amount that cannot be compensated:

Total fed back into the grid	Total compensated			Balance
66,26€	_	42,12€	=	24,12€

Virtual Battery

How can I benefit from the 100% of my compensation?

If you hire our virtual battery service, we can accumulate that non-compensable adjustment and subtract it from your next bill or another supply bill belonging to the same owner. (More info here)

Example #1: Virtual Battery Charging

Let's consider the previous example, applying the virtual battery to a January 2024 bill with 150 kWh consumed from the grid, 300 kWh discharged and a 2.0TD rate with three energy periods. Let's assume this customer starts at a \leq 13 charge virtual battery.

Billed cost of grid consumption		Access tolls estimate		Amount	of discharge	d energy		
P1	P2	P3	P1	P2	P3	P1	P2	P3
50 kWh consumed x 0,210603 €/kWh	50 kWh consumed x 0,14878 €/kWh	50 kWh consumed x 0,101653 €/kWh	50 kWh consumed x 0,076974 €/kWh	50 kWh consumed x 0,027963 €/kWh	50 kWh consumed x 0,002752 €/kWh	100 kWh Discharged x 0,10287 €/kWh	100 kWh Discharged x 0,09429 €/kWh	100 kWh Discharge x 0,0706 €/kWh
10,53€	7,44€	5,08€	3,85€	1,40€	0,14€	10,29€	9,43€	7,06€
Total € C	Total € Consumption 23,05 € Total € Tolls 5,39 €		Total € Consumption 23,05 €		39 €	Total €	Discharged	26,78 €

This example's compensation would look like this:

Consumption total		Tolls total		Compensation peak	
23,05 €	—	5,39€	=	17,66€	

In this case, the total discharged exceeds the compensation peak, so the difference will be used to charge the virtual battery:

Total discharged	Total compensated			Battery charge
26,78€	—	17,66€	=	+9,12€

So the virtual battery balance would be:

VB balance		Charge		New VB balance
13€	+	9,12€	=	22,12€

Example #2: Virtual Battery Discharge

Let's consider another example, applying the virtual battery to a January 2024 bill with 150 kWh consumed from the grid, 90 kWh discharged and a 2.0TD rate with three energy periods. Let's assume this customer starts at a \leq 22.12 charge virtual battery.

Billed co	ost of grid cons	sumption	Access tolls estimate			
P1	P2 P3		P1	P2	P3	
50 kWh consumed x 0,210603 €/kWh	50 kWh consumed x 0,14878 €/kWh	50 kWh consumed x 0,101653 €/kWh	50 kWh consumed x 0,076974 €/kWh	50 kWh consumed x 0,027963 €/kWh	50 kWh consumed x 0,002752 €/kWh	
10,53€	7,44€	5,08€	3,85€	1,40€	0,14€	
Total € C	onsumptio	on 23,05 €	Total € Tolls 5,39 €			

Amount of discharged energy						
P1	P3					
30 kWh Discharged x 0,10287 €/kWh	30 kWh Discharged x 0,09429 €/kWh	30 kWh Discharged x 0,0706 €/kWh				
3,08€ 2,83€ 2,12€						
Total € Discharged 8,03 €						

This example's compensation would look like this:

Consumption total	Tolls total	С	Compensation peak		
23,05€		5,39€	=	17,66€	

In this case, the total discharge does not reach the compensation peak, so the difference will be the maximum that the virtual battery can discharge (as long as there is sufficient balance in the virtual battery) to compensate for this extra amount on the bill:

Total discharged	Total compensated			Battery discharge
8,03€		17,66€	=	-9,63€

Once the virtual battery balance is used, it will be updated by adding and subtracting these operations. Thus, the new virtual battery balance will be:

VB balance	Discharge		New VB balance
22,12€	 9,63 €	=	12,49€

other important issues

How do you calculate how many kWh are compensated?

At U energia, when we create your bill, we use the numbers provided to us by the person who takes the meter reading, your distributor. We wait for them to send us the numbers they have taken from the reading and use them to prepare your bills.

When a bill contains incorrect consumption amounts, and once we have ruled out this being an internal error, we ask the distributor to send us the correct reading.

So why doesn't the amount on my bill match the amount on my meter?

Current regulations talk about net balances. This means that your electrical unit measures energy in hours, and the situation may arise when you both use energy from the grid and feed energy back into the grid all in the same hour. In this case, the distributor calculates a net balance by grouping the energy consumed and the energy fed back in each hour.

WITHOUT NET CALCULATION			WITH NET CALCULATION		
Time	Energy consumed	Energy fed back into the grid	Time	Energy consumed	Energy fed back into the grid
-	_	-	-	_	-
12	50	20	12	30	0
13	20	5	13	15	0
14	15	0	14	15	0
15	0	15	15	0	15
16	10	0	16	10	0
-	_	-	-	_	-
	Total input 95	Total output 40		Total input 70	Total output 15

For this reason, the amount shown on the bill may not always coincide with the meter reading.

How can I access these calculations?

Distributors are the ones who make these calculations and they are not obligated to share them with the energy company, so we don't have access to them. You may, however, get in touch with your distributor and request access to them.

How can I maximise the efficiency of my self-consumption unit?

To make the most of your investment, the best thing you can do is consume energy at the same time as it is being generated. Take advantage of this moment to turn on your home appliances or other devices, or programme them to run during this time, allowing you to use up the energy you generate during daylight hours. This way, you'll achieve greater savings on your electricity bill.

Where can I consult the regulations governing self-consumption?

Spanish Royal Decree 244/2019 of 5 April is the law that currently governs the administrative, technical and financial conditions of electrical energy self-consumption. Click on the link to consult the law.